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1. Introduction  
 

An overview is needed of the development during 3 decades of: A(1982),[1], to A(1993), 

[7] and to A(2005), up to now, to this Section A, of the general failure criterion for wood.  

A general failure criterion for wood was for the first time derived in A(1982), what was 

necessarily based on a tensor polynomial format. This followed from a first derivation of 

the orthotropic extension of the critical distortional energy principle, in paragraph 2.1.2 of 

A(1982), showing this basic principle to have the general form of the second degree tensor 

polynomial and further by the derivation of paragraph 1.2.4 of A(1982), showing the third 

degree tensor polynomial terms to represent hardening behavior up to the exact fracture 

mechanics mode I - II  strength. The further extension to a higher degree tensor polynomial 

represents the polynomial expansion of the failure criterion, because the measured data 

points represent points of the exact failure criterion, while these points also are the 

polynomial points, which thus represents the polynomial expansion of the exact failure 

criterion and as such, as many polynomial terms and data points can be chosen, as 

necessary for a fit of the wanted precision.  

In the introduction and paragraph 1.1, of A(1982), the concept of the yield surface of 

classical plasticity theory is discussed with the conditions of orthotropic symmetry in the 

main planes. All transformation laws of the stress tensors:    and of the strength tensors: 

ijF  are given, making it possible to define e.g. the uniaxial strength in any direction. This is 

shown in paragraph  1.2 of A(1982), by the fit to test results of tension compression and 

shear of clear wood . The initial flow properties perpendicular to grain are fully and 

precisely described by the second degree polynomial, confirming the critical distortional 

energy principle for initial yield. In the longitudinal direction, compressional hardening is 

possible in the radial plane after this initial yield. This is discussed in paragraph 1.2.4, of 

A(1982) leading to the derivation of the Wu-equation of Fracture Mechanics, which also 

applies for micro-cracks of clear wood as is explained in [9] and is discussed in Section C, 

about fracture mechanics. In paragraph 1.2.5.of A(1982), the uniaxial off-grain-axis 

strength is discussed, leading to the derivation of the Hankinson and Norris equations as 

initial yield equations. It is shown that the, usually applied, von Mises- Hill- Hoffmann- 

Hankinson- and Norris criteria are special forms of the critical distortional energy principle 

of yield and are not generally valid. The Hill- and Norris- criteria only apply for materials 

with equal compression and tension strengths. Only the Hoffmann criterion accounts for 

such different strengths. However the Hill- and Hoffmann criteria contain a cyclic 

symmetry of the stresses in the quadratic terms, as applies for the isotropic case what 

causes a fixed, not free, orientation of the failure ellipse in stress space [1]. These criteria 

thus cannot apply generally for the orthotropic case. The same prescribed orientation is 

given by the theoretical Norris equation, being far from wood behavior that shows a zero, 

or nearly zero, slope of the ellipsoid with respect to the main direction. This explains why 

the older empirical Norris equation, with zero slope, applied for wood in Europe, is less 

worse than the later theoretical Norris equation.  
A further derivation in A(1993) provided the extended Hankinson equations, extended by 

one hardening parameter, which is able to fit precisely different test results, at different 

hardening states, by different test methods and the fact that different values of one 

parameter are able to precisely fit whole curves of different hardening states of different 

test types, is the proof that the polynomial third degree terms ijkF  determine the hardening 

state as part of the exact criterion based on a theoretical necessity. This theoretical 

necessity is explained by the exact mixed mode Wu-equation of fracture mechanics, which 

is sown to represent these third degree coupling terms.  
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The tensor transformations of ijkF '  tensors were only given in A(1982), because the choice 

was made, in later publications, for the in general more simple stress tensor approach of 

strengths in the main planes, by expansion of the stresses into the main material planes, 

providing the less number of polynomial terms. For information, the ijkF ' transformations 

are also given here in Appendix 2.  

Paragraph 2 of A(1982) delivers general information. The method of paragraph 2.2 of 

determination of hardening rules should not be followed. The method is too complicated 

and only descriptive (phenomenological) and determination of the initial response with 

gradual “plastic” flow with hardening is not needed for the determination of the ultimate 

state, which follows from the elastic full plastic approximation of limit analysis.  

Extensions of the derivations of A(1982), are given in [7] and [10], where also an 

alternative derivation was given of the critical distortional energy criterion of initial yield 

of orthotropic wood. However the final, exact derivation is given in Appendix 1 of this 

Section. A further discussion is given in A(1993) of the third degree terms representing the 

Wu-equation with special hardening effects due to micro-crack arrest by strong layers 

occurring after initial yield. It followed, that for a precise fit, without meaningless higher 

degree polynomial terms, separate criteria are necessary for tension and for compression.  

This is obvious, because of the different failure mechanisms of tension and compression. 

This is applied to resolve the initial yield equation, eq.(2.14), into 2 factors, giving a factor 

for compression and a factor for tension failure, leading to  the product of the Hankinson 

equations for tension and for compression. In A(1993), also the derivation was given of the 

exact modified Hankinson criterion and of the general form of the higher degree constants 

and how they can safely be determined from uniaxial tests.  

An extension of the tensor polynomial method was given [3] by a general approach for 

anisotropic, not orthotropic, behavior of joints, (as punched out metal plates) and the 

simplification of the transformations by 2 angles as variables.  

A confirmation of the results of [1] by means of coherent measurements (only in the radial-

longitudinal plane) of [4] provided the generalization to an equivalent, quasi homogeneous, 

polynomial failure criterion for timber, (wood with small defects). These measurements 

also show a determining influence of hardening (by hindered micro-crack propagation) on 

the equivalent main strengths and on the failure criterion of wood. This follows from the 

theoretical explanation [9], of the Wu fracture mechanics criterion for layered composites.  

The mentioned main developments and further developments to A(2005) and A(2009) are 

subject of this Section A in order to provide an overview of the final derived theory.  

Design and control calculation have to be based on the exact theory of limit analysis e.g. 

by finding an equilibrium system that satisfies the boundary conditions and nowhere 

surmounts the failure criterion. Essential for design thus is the derivation of the exact 

failure criterion for wood, which is the subject of this Section A. The Influence of 

temperature, moisture content, creep and loading rate on the behavior at “flow” and failure 

is given in Section B or in B(1989a) or [6] (see e.g. in general fig. 5.6 of [6]). The 

molecular deformation kinetics rate equations [6], provide the physical constitutive 

equations for wood and other materials.  

 

2. The general failure criterion for wood polymers  
 

2.1. General properties  
 

A yield- or flow-criterion gives the combinations of stresses whereby flow occurs in an 

elastic-plastic material like wood in compression. For more brittle failure types in 
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polymers with glassy components like wood at tensile loading, there is some boundary 

where above the gradual flow of components at peak stresses and micro-cracking may 

have a similar effect on stress redistribution as flow especially for long term loading. It is 

discussed in [10] and later that these flow and failure boundaries may be regarded as 

equivalent elastic-full- plastic flow surfaces of limit analysis. The initial loading line shows 

gradual flow and hardening and stable micro-cracking up to final “flow” at the top. The 

following unloading is elastic and reloading shows a linear elastic loading up to flow at the 

same top. This is independent of the loading history (by unaltered geometry) and the linear 

elastic loading up to full plastic failure can be chosen to determine the ultimate state. The 

full plastic state is a line in a cross section of stress space and the flow- or failure criterion 

is a closed surface in the stress space i.e. a more dimensional space with coordinates 

1 2 3 4 5 6, , , , ,      .  

A cut, e.g. according to figure 2.1 through the plane of the coordinate axes x = 1  and  

y = 2 , will show a closed curve and such a curve always can be described by a polynomial 

in x and y like:  
ax + by + cx

2
 + dy

2
 + exy + fx

3
 + gy

3
 + hx

2
y + ixy

2
 + ....... = k  (2.1)  

 
Figure 2.1.  Failure ellipsoid and definition of positive stresses.  

 

whereby as much as terms can be accounted for as is necessary for the wanted precision. 

The surface will be concave because of the normality principle, and higher degree terms, 

causing local peaks on the surface (and thus causing inflection points) are only possible by 

local hardening effects depending on the loading path and are outside the initial flow-

criterion. It can also be seen that the constants f and g are indeterminate and have to be 

taken zero because, for y = 0, eq.(2.1) becomes: ax + cx
2
 + fx

3
 = k, having the real roots  

0 1 2x , x , x   and thus can be written: 

     0 1 2x x x x x x 0       (2.2)  

Because there are only two points of intersection possible of a closed surface with a line, 

there are only two roots by the intersecting x-axis e.g. x = x 0  and x = - x1    and the part  

(x + 2x ), being never zero within or on the surface and thus is indeterminate, has to be 

omitted. For a real concave surface “f” thus is necessarily zero.  

The same applies for g: g = 0 following from the roots of y when x = 0.  

The equation can systematically be written as stress-polynomial like:  

i i ij i j ijk i j kF F F ........ 1             (i, j, k = 1, 2, 3, 4, 5, 6)  (2.3)  

In [1] it is shown that clear wood can be regarded to be orthotropic in the main planes and 

the principal directions of the strengths are orthogonal (showing the common tensor 

transformations) and higher degree terms, which are due to hardening, normally can be 

neglected so that eq.(2.3) becomes:  

i i ij i jF F 1        (i, j = 1, 2, 3, 4, 5, 6)  (2.4)  
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In [10], and as discussed in Appendix 1, it is shown that this equation represents the 

critical distortional energy criterion for initial flow or failure. 

In eq.(2.4) is, for reasons of energetic reciprocity, ij jiF F  (i   j) and by orthotropic 

symmetry in the main planes (through the main axes along the grain, tangential and radial) 

there is no difference in positive and negative shear-strength and terms with uneven 

powers in 6  thus are zero or: 16 26 6F F F 0;    and there is no interaction between 

normal- and shear-strengths or: ijF = 0   (i   j;    i, j =  4, 5, 6).  

Thus eq.(2.4) becomes for a plane stress state in a main plane:  
2 2 2

1 1 2 2 11 1 12 1 2 22 2 66 6F F F 2F F F 1               (2.5)  

For a thermodynamic allowable criterion (positive finite strain energy) the values iiF must 

be positive and the failure surface has to be closed and cannot be open- ended and thus the 

interaction terms are constrained to:  

11 22F F > 2
12F   (2.6)  

( 11 22F F = 2
12F  gives a parabolic surface and 11 22F F < 2

12F  is hyperbolic, both open ended)  

For the uniaxial tensile strength 1 = X   ( 2 6 0    ) and eq.(2.5) becomes:  

2
1 1 11 1F F 1      or: 2

1 11FX F X 1    (2.7)  

and for the compression strength 1 = - X’ this is:  

2
1 11FX F X 1     (2.8)  

and it follows from eq.(2.7) and (2.8) that 1F and 11F  are known:  

1

1 1
F

X X'
    and 11

1
F

XX'
   (2.9)  

In the same way is for 1 6 0    , in the direction perpendicular:  

2

1 1
F

Y Y'
    and 22

1
F

YY'
   (2.10)  

Further it follows for 1 2 0     (pure shear), for the shear strength S, that:  

66 2

1
F

S
   (2.11)  

and according to eq.(2.6) is: 1/ XX'YY'  < 12F  < 1/ XX'YY'   (2.12)  

It can be shown (as discussed in [1]) that the restricted values of 2 12F , based on assumed 

coupling according to the deviator stresses, as given by Norris [13], Hill or Hoffmann [14] 

as: 2 12F  = -1/2XY, or: 12F  = - (1/ 2X  + 1/ 2Y  - 1/ 2Z ) are not general enough for 

orthotropic materials and don’t apply for wood. There also is no reason to restrict 12F  

according to e.g. Tsai and Hahn [15] as: 2 12F  = 1/ XX'YY'  or according to Wu and 

Stachurski [16] as: 2 12F    - 2/X X ' . These chosen values suggest that 12F  is ~ 0.2 to 0.5 

times the extreme value of eq.(2.12).  

The properties of a real physical surface in stress space have to be independent on the 

orientation of the axes and therefore the tensor transformations apply for the stresses   of 

eq.(2.5). These transformation are derivable from the equilibrium of the stresses on an 

element formed by the rotated plane and on the original planes, or simply, by the 

analogous circle of Mohr construction. For the uniaxial tensile stress then is:  
2

1 t cos          2
2 t sin           6 t cos sin       

Substitution in eq.(2.5) gives:  
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2 2 2 4 2 2 2 2 4
1 t 2 t 11 t 12 66 t 22 tF cos F sin F cos (2F F ) cos sin F sin 1               (2.13)  

and substitution of the values of F:  
2 4 2 4

2 2 2 2t t
t t 12 t

cos sin1 1 1 1
cos sin 2F sin

X X' Y Y' XX' YY'

      
             

   
 

 + 
2 2 2
t

2

cos sin
1

S

  
   (2.14)  

It can be seen that for θ = 0 this gives the tensile- and compression strength in e.g. the 

grain direction: t  = X and  t  = X' , and for θ = 90
0
, the tensile and compression 

strength perpendicular to the grain: t  = Y and t  = - Y ' , and that a definition is given of 

the tensile and compression strengths in every direction. These are the points of 

intersection of the rotated axes with the failure surface. Eq.(2.13) thus can be read in this 

strength component along the rotated x-axis: t  = 1  according to:   

2
1 1 11 1F' F' 1       (2.15)  

and eq.(2.13) gives the definition of the transformations of 1F'  and 11F' . The same can be 

done for the other strengths. The transformation of ijF'  thus also is a tensor-transformation 

(of the fourth rank) that follows from the rotation of the symmetry axes of the material. 

Transformation thus is possible in two manners. The stress-components can be 

transformed to the symmetry directions according to eq.(2.5). Or the symmetry axes can be 

rotated, leaving the stresses along the rotating axes unchanged. For this case the general 

polynomial expression eq.(2.16) applies:  
2 2 2

1 1 2 2 11 1 12 1 2 22 2 16 1 6 26 2 6 66 6F' F' F' 2F' F' F' F' F' 1                     (2.16)  

These transformations of strength tensors F'  are e.g. given in [1] and in Appendix 2.   

 

2.2. Initial yield criterion and derivation of the Hankinson and  
       extended Hankinson equations  
 

As mentioned, eq.(2.5) or eq.(2.14) for the off-grain-axis tensile- and compression 

strengths, represents the initial yield condition, being the extended orthotropic critical 

distortional energy principle derived in Appendix 1..  

This "initial yield" equation, eq.(2.14), can be resolved into factors as follows:  
2 2 2 2

t t t tcos sin cos sin
1 1 0

X Y X' Y '

          
        

   
  (2.17) 

giving the product of the Hankinson equations for tension and for compression, (where X 

and X’ are the tensile and compressional strengths in grain direction). This applies when: 
2

122F 1/S 1/ X'Y 1/ XY'     (2.18) 

In this equation, derived in [1], (1/ X'Y 1/ XY' ) is of the same order, and thus about 

equal to 1/ 2S  so that 2 12F  is of lower order with respect to 1/ 2S . In [2] eq.(2.18) was used 

as a measure for 12F  what is a difference of two higher order quantities and thus can not 

give a precise information of the value of 12F , that also can be neglected as first estimate. 

In [5], wrongly the sum of 1/ 2S  and (1/ X'Y 1/ XY' ) is taken to be equal to 2 12F , being 

of higher order with respect to the real value of 2 12F  and it is evident that this value did not 

satisfy eq.(2.12) for a closed surface.  

Eq.(2.17) shows that the exponent “n” of the generalized Hankinson formula eq.(2.19):  



Section A, Failure criterion of wood and wood like polymers 

 

 7 

n n
t tcos sin

1
X Y

   
    (2.19)  

is: n = 2 for tension and compression at initial yield when there are no higher degree terms. 

A value of n, different from n = 2 thus means that there are third degree terms due to 

hardening after initial yield as in eq.(2.21).  

The initial yield criterion eq.(2.14) or eq.(2.17), being the, for orthotropy, extended critical 

distortional energy principle, should satisfy both the elastic and the yield conditions at the 

same time. Because the Hankinson equation with n = 2  also applies for the axial modules 

of elasticity and because this modulus is proportional to the strength, the Hankinson 

equations with n = 2, eq.(2.17), satisfies this requirement. Thus n = 2 is necessary for 

initial yield. Thus after some strain in the elastic stage, the initial yield is reached and 

because the modulus of elasticity follows the Hankinson equation with n = 2, also the yield 

criterion, eq.(2.17), containing the Hankinson equations, follows this and has the quadratic 

form and no higher degree terms. This also is measured. It is mentioned in [8], that for 

glulam and for clear wood in bending and in tension, n   2. The combined compression 

with shear tests (of Keylwerth by the "Schereisen", allowing only shear-deformation in one 

plane) show that for off-axis longitudinal shear, also in the radial plane, n = 2, showing no 

higher degree terms for the shear strength. According to fig. 2.4.1, this also applies for the 

tangential plane, but not for the radial plane. The value of n thus depends on the type of 

test and it is mentioned e.g. by Kollmann [19], that n   2.5 for compression of clear wood, 

showing that hardening was possible in the tests and the third degree terms of the yield 

criterion are not zero [10]. The test method of [4] shows that 112F , 166F  and 266F  in the 

radial plane have an influence, (what is shown to be the hardening effect due to crack 

arrest). Thus the test method (early instability by loss of equilibrium of the test, or not) has 

influence on whether only initial yield (n = 2), or a more stable failure will occur (n 

different from n = 2). Thus, when n ≠ 2, higher degree terms are not zero in the failure 

criterion and eq.(2.21) applies.  

An equation of the fourth degree (eq.(2.21) in t ) can always be written as the product of 

two quadratic equations, eq.(2.20). For a real failure surface the roots will be real and 

because the measurements show that one of the quadratic equations is determining for 

compression- and the other for tension- failure mechanisms and must be valid for zero 

values of tC  and/or dC  as well, this factorization leads as the only possible solution to be 

the product of extended Hankinson equations for tension and compression as follows:  
2 2

2 2 2t t
t t

cos sin
1 sin cos C

X Y
(    

      
 

2 2
t tcos sin

1
X ' Y '

   
    

+ 2 2 2
t dsin cos C )    = 0  (2.20) 

Performing this multiplication, eq.(2.20) thus is in general:  

  2 2 2 4 2 2 2 4
1 t 2 t 11 t 12 66 t 22 t 112F cos F sin F cos 2F F cos F sin 3 F             

  3 4 2 3 4 2 4 4 4
166 t 122 266 t 1266 tF cos sin 3 F F sin cos 12F cos sin 1             (2.21)  

giving the third degree tensor polynomial, applied in [1] and [4], where it appeared that 

1122F  and other possible higher degree terms can be neglected except 1266F .  

The values tC  and dC  can be found by fitting of the modified "Hankinson equations" 

eq.(2.20), for uniaxial off-axis tension and compression test results, giving the constants:  
2

12 t d2F 1/ X'Y 1/ XY' 1/S C C ;           112 166 t d3 F F C / X' C / X;    

 122 266 t d3 F F C / Y' C / Y;      and    1266 t d 1122 t d12F C C 12F C C      (2.22)  
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A fit of the Hankinson power equation, eq.(2.19) always is possible and different n  values 

for tension and compression from n = 2 in that equation means that there are higher degree 

terms and that tC  and dC  are not zero, as follows from eq.(2.20).  

For timber with defects and grain and stress deviations, the axial strength is determined by 

combined shear and normal stress perpendicular to the grain. This may cause some stable 

crack propagation and a parabolic curve of the effective shear strength (according to the 

Mohr- or Wu-equation, eq.(2.27) with c = 1) given by a third degree term. For timber n can 

be as low as n   1.6 in eq.(2.19) for tension, showing higher degree terms to be present. 

This also follows from n   2.5 for compression. The data of [4], show that 166F , 266F  and 

112F  of the radial plane have influence showing (see fig. 2.4.1, 2.5.2 and 2.4.4), the 

parabolic like curves, different from elliptic curves of 2
nd

 degree, at longitudinal tension 

side, of fig. 2.4.3. It could be expected for clear wood that 166F = 0 and 122F = 0 because the 

longitudinal stress 1  is in the plane of the crack and not influenced by the crack tip. 

However collinear crack propagation is not possible at shear failure and also due to grain 

deviations in timber there is an influence on 166F  and 122F .   

It was shown in [1] that 12F  is small and can not be known with a high accuracy. Small 

errors in the strength values (X, X’, Y, Y’, S) may switch 12F  from its lower bound to its 

upper bound, changing its sign and the value thus is not important and thus negligible for a 

first estimate. The data of [4] of the principal stresses in longitudinal tension, being close 

to initial yield, show 12F  to be about zero at initial yield, thus when dC = tC = 0 and thus 

when:     21/S 1/ X'Y 1/ XY'    (2.23)  

Then eq.(2.22) suggests that: 12 t d2F C C   (2.24)  

due to hardening when tC  and dC  are not zero. This is tested in A(1993) and it appears 

that, because 12F  ≈ 0  for longitudinal tension,  S follows, (according to eq.(2.22), from: 

2
t d1/S 1/ X'Y 1/ XY' C C      

and S should not be measured separately by a different type of test, but follows, (as the 

other strength values) from the uniaxial off-axis tension- and compression tests.  

Because 1122F  is negligible, is, according to eq.(2.22): 12 1266F  ≈ tC dC ,  

what also is small and negligible.   

166F  will have a similar bound as 266F , as follows from eq.(2.27) what is given in fig. 2.4.1  

and follows by replacing the index 2 by 1 and Y by X. However the determining bound of 

166F  follows from eq.(2.22), when 112F  is known. 112F  is not discussed in [1], but a general 

method to determine the bounds of 112F  is given in [1], for 266F . the followed estimation, 

in § 2.4, of 112F , based on 1  and 2  alone, 6 0   also is sufficient.  

It appears not possible to have one failure criterion for the different failure types of 

longitudinal tension and longitudinal compression. For the longitudinal tension fit, the 

hardening constants 112F , 12F  and 122F  are zero by no hardening. For the longitudinal 

compression fit, these constants are not zero and 112F , thus hardening, dominates. For 

tension, the early instability of the test, by splitting, determines the strength, while for 

compression the late instability after hardening defines failure. It thus is necessary for a 

precise fit, to fit both regions (longitudinal tension and longitudinal compression separately 

and not to apply one overall criterion for longitudinal tension and compression. With the 

estimates of 266F  and 112F  to be close to their bounds for compression, and with zero 
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normal coupling terms for tension, all constants are known, according to eq.(2.22), 

depending on dC  and tC  from uniaxial off-axis tension and compression tests. (see § 2.4). 

 

2.3. Transverse strengths  
 

In [1] it is shown that for rotations of the 3-axis, when this axis is chosen along the grain, 

eq.(2.5) and (2.16) may precisely describe the peculiar behavior of the compression- 

tension- and (rolling) shear-strength perpendicular to the grain and the off-axis strengths 

without the need of higher degree terms. These measured lines of the off-axis uniaxial 

transverse strength of fig. 2.2, follow precisely from eq.(2.15):  
2

1 1 11 1F' F' 1      

When for compression the failure limit is taken to be the stress value after that the same, 

sufficient high, amount of flow strain has occurred, then the differences between radial- 

tangential- and off-axes strengths disappear and one, directional independent, strength 

value remains (see fig. 2.2). For tension perpendicular to the grain, only in a rather small 

region (around 90
0
, see fig. 2.2) in the radial direction, the strength is higher and because 

in practice, the applied direction is not precisely known and avoids this higher value, a 

lower bound of the strength will apply that is independent of the direction. The choice of 

these limits means that:  

1 2F F 0   and 11 22F F 0   

and that also 12F  is limited according to:  

12 11 22 662F F F F    

Further then also is:  

6F' 0   and  66 66F' F   1/ 2
rol     (2.25) 

From measurement it can be derived that 12F  is small leading to:  

66 11 22F F F   or rol  is bounded by:  

rol XX'/ 2 YY'/ 2      (2.26) 

and the ultimate behavior can be regarded to be quasi isotropic in the transverse direction.  

 

  
Figure 2.2 - Yield stresses and hardening  

 

The measurements further show for this rotation around the grain-axis that the "shear 
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strengths" in grain direction in the radial- and the tangential plane, 44F  and 55F , are 

uncoupled or 45F  = 0, as is to be expected from symmetry considerations. 

 

2.4. Longitudinal strengths  
 
When now the 3-axis is chosen in the tangential or in the radial directions, the same 

relations apply (with indices 1, 2, 6) as in the previous case. The equations for this case 

then give the strengths along and perpendicular to the grain and the shear-strength in the 

grain direction.  

In [1] it is shown that this longitudinal shear strength in the radial plane increases with 

compression perpendicular to this plane according to the coupling term 266F  (direction 2 is 

the radial direction” direction 1 is in the grain direction):  
2 2 2

2 2 22 2 66 6 266 2 6F F F 3F 1          

  or:    6 2 2

2

(1 / Y) (1 / Y ')

S 1 c / Y '

   


 
  (2.27)  

with: c = 2
2663F Y'S   0.9   (0,8 to 0.99, see fig. 2.4.1). 

 When c approaches c   1 (measurements of project A in fig. 2.4.1), eq.(2.27) becomes:  
2

6 2 1
S Y

  
  

 
   (2.28) 

which is the mixed I– II mode Wu- equation of fracture mechanics, showing that micro-

crack and macro crack extensions are the same. The same can be done at the tensile side 

giving the same equation with Y replaced by - Y' . The exact derivation of this equation, in 

orthotropic stresses, is given in C(2011), paragraph 2.3: 

 

 

2

2 2
6

2 6 2 I II

22 2 2 2

0 t 0 t 6 Ic IIct 0
t 6 0

cc K K
1

/ 2 n K Kr / 2 n 2 r

    
     
       

   (2.29) 

because by the transformation from elliptical to circular coordinates: 0 02r / c  . Critical 

small crack propagation occurs at a critical crack density, when the crack distance is about 

the crack-length and is thus independent of the crack length  and crack tip radius 0r , which 

can be chosen to have a standard value and the second part of eq.(2.29) can be written as:  

 

 

2

2
6

2 2 6

2 2

2c 6ct 0
t 6 0

cc
1

r / 2 n 2 r

    
   

    
   (2.30) 

thus in deterministic ultimate strength values: 2c 6c,  .  

The value of 266F  of eq.(2.27), depends on the stability of the test, thus is not a constant, 

but a hardening factor, determining the amount of hardening at the, by the testing 

instability determined, ultimate state. This is shown e.g. by the following Fig. 2.5.1, where 

parameter values according to more stable torsion tube tests, are used to predict the oblique 

grain compression strength values. Because of more hardening in the torsion tube test, the 

peak of 1.1, at 10
0
, is predicted, which can not be measured in the oblique grain test, due to 

earlier instability due to lack of equilibrium, of this test setup, after “initial flow”.  

As derived in [9], eq.(2.27) does not only apply for tension with shear but also for shear 

with compression 2  perpendicular to the flat crack. For a high stress 2  the crack is 
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closed at:  2 c    = c  and the crack tip notices only the influence of 2  = c  because 

for the higher part of 2 , the load is directly transmitted through the closed crack and 

eq.(2.28) becomes:  

6 2 c c( )
1

S S Y

    
       or:     6 C           (2.31) 

where 2  and c  are negative, giving the Coulomb-equation with an increased shear 

capacity due to friction:     . However, inserting the measured values of [4], it appears 

that the frictional contribution is very small. The micro-crack closure stress c  will 

numerical be about equal to the tensile strength: c    - Y. The shear strength will be 

maximal raised, at high compression of c    - 0.9Y’, by a factor: 

     1 0.9Y' Y /S 2 1 0.3 0.9 5.6 3.7 / 9.8 2 1.03         

Thus the combined shear- compression strength is mainly determined by an equivalent 

hardening effect, caused by crack arrest in the critical direction by the strong layers. At 

higher 2  stresses, compression plasticity perpendicular to the grain (project A of [11], see 

fig. 2.4.1) or instability of the test (project B of [11] with oblique-grain compression tests) 

may become determining, showing a lower value of c of eq.(2.27) than c = 1.  

Because the slopes of the lines (at small 2 ) of project A and B of [11] are the same, there 

is no indication, for clear wood, of an influence of the higher degree terms: 112F , 122F  and 

166F  of project B. When for longitudinal tension 12F , 122F  and 112F  are zero, then, when 

166F = 0, also 266F 0  according to eq.(2.22). and then also t dC C 0  . Further, the line 

of B is below the line of A and the c-value of B is lower, closer to the elliptic failure 

criterion. This is an indication that hardening after initial yield (thus departure from the 

elliptic equation) of project B, the oblique-grain compression test, is less than that of 

project A and thus that the test is less stable. (Project C of [11] follows the elliptic failure 

criterion because of the influence of transverse failure due to rolling shear that is shown 

before, (§2.3), to be elliptic).    

The high value of 266F , in the radial plane, (measured with 1  = 0), indicates that for clear 

wood, 122F  has to be small according to eq.(2.22). It further follows from published 

Hankinson lines, with n   2, of clear wood that third degree terms are zero in the 

tangential plane, confirming the results of projects A and B of [11], mentioned before. 

There is an indication that this is a general property of timber [11], because when shear 

failure is free to occur in the weakest plane, as usually in large timber beams and glulam, it 

occurs in the tangential plane and n = 2, showing no higher degree terms. 

 
Figure 2.4.1 a - Combined shear-tension and shear-compression strengths. F266  
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Figure 2.4.1 b.: Fig.10 of A(1982) of Combined shear-tension -compression strengths. F266 

 

Determining for compression failure, in the radial plane, is the microscopic kinks 

formation in the cell walls, which is a buckling and plastic shearing mechanism. The kinks 

multiply and unite in kink-bands and kink-planes at fiber misalignments. Known, by 

everyone, is the slip-plane of the prism compression test showing a horizontal crease 

(shear line, slip line) on the longitudinal radial plane, while on the longitudinal tangential 

plane the crease is inclined at 45
0
 to 60

0
 with the vertical axis (depending on the species),  

The cause are the rays in the radial planes, which are the main disturbances of the 

alignment of the vertical cells. For this bi-axial compression fracture, the same fracture 

mechanism occurs as for combined mode I-II fracture, discussed above. The shear loading 

of the micro-cracks is now due to the misalignment component of the normal stress. The  

general equation now becomes:  2 2 2

1 1 2 2 11 1 22 2 112 1 2F F F F 3F 1                 (2.32) 

  

 

 

 
Fig. 2.4.2. Kinkband formation, where K is the plastic shear 

strength of the matrix (e.g. 11.3 Mpa),  015   is the 

misalignment (e.g. for Spruce) y  is the longitudinal 

 shear yield strain.   

 

Because 12 6F 0    and  the contribution of the term with 122F  is of lower order, not 

visible in Fig. 2.4.3. The choice of 6  = 0 is made because then any high value of 112F  is 

most determining. Eq.(2.32) can be written:  
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2 2
21 2

1 2 112 2 1

1 1 1 1
3F 1

X X' Y Y' XX' YY'

    
            
   

   (2.33) 

Thus:: 

       2
1 1 112 2 2 2X' X 1 3F XX' 1 / Y 1 / Y' XX'              (2.34)  

The critical value of 112F , to just have a closed surface, will occur at high absolute values 

of 1  and 2 , thus in the neighborhood of 1  X' . Inserting safely this value in the 

smallest term of eq.(2.34) gives: 

         2
1 112 2 2 21 3F XX' X' X / X' 1 / Y 1 / Y' XX'            

or:  
  2 21

2

2

1 / 1 / '
1 /

' 1 / '

Y Y
Y

X c Y

 




 
    


      where: 2

112c 3F Y'X'      (2.35)  

Thus when the hardening constant c approaches one: c 1 ,  the curve reduces to a para-

bola and the requirement to have a closed curve is c < 1, or: 2
1123F 1/ Y'X'     (2.36)  

More general when 12F  and 122F  are not fully negligible, the bound: c < 1 becomes:  

2 2
112 12 122c 3F X' Y' 2F Y'X' 3F Y' X' 1              (2.37) 

for longitudinal compression, where besides 1 X'   , also 2 Y'    is substituted in the 

contribution of the smallest term, as determining point to just have a closed surface.  

The same could be expected to apply for longitudinal tension, giving the same equation 

(2.35) with X’ replaced by X. However, because of an other type of failure, 112F  and 122F  

are zero for longitudinal tension, see fig. 2.4.3 which is an ellipse at the longitudinal 

tension side, thus is a second degree equation, according to eq.(2.33) with 112F  ≈ 0 (and 

with 12F ≈ 0 by the zero slope of the ellipse).  

The found (cut-off) parabola eq.(2.35) (for c close to c = 1) is, as eq.(2.27), equivalent to 

the mixed I–II mode Wu-fracture equation for shear with tension or with compression 

perpendicular. For wood in longitudinal compression, this failure mechanism acts in the 

radial plane giving high values of 266F  and 112F  close to their bounds of c ≈ 0.8 to 0.9.  

The parabolic Eq.(2.35) is shown in Fig. 2.4.3, by the data points outside the points on the 

ellipse of the longitudinal compression side and is shown as fitted to the theoretical Wu-

parabola in fig. 2.4.4. As mentioned, this hardening of the torsion tube tests, is not found in 

the uniaxial oblique grain tests, which is earlier unstable, thus showing less hardening. 

According to fig. 2.4.3, below, is 122F -term of lower order with respect to 112F - term and 

not visible in the figure. Determining is 112F , representing hardening by kinking and slip-

plane formation (see Fig. 2.4.2).  As to be expected, and according to fig.2.4.3, is 112F  zero 

at the longitudinal tension side (as 122F  and 12F ).  

In A(1993) is shown that all data may show a different amount of hardening at failure. 

Because tests in longitudinal compression show other and more hardening than tests in 

tension, separate data fits for longitudinal tension and longitudinal compression are 

necessary, as given by eq.(2.43) and eq.(2.44). For the parameter estimation by the uniaxial 

oblique grain tests, is in eq.(2.22):  

12 122 166F F F 0   ;  2

1123F 0.9 / ((X') Y') ;  2

2663F 0.9 / (S Y')   (2.38) 

Because hardening is mostly not guaranteed in real structures and test situations, the initial 

flow criterion applies for the Codes according to:   
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2 2 2

6 1 1 1 2 2 2

2
1

S X X' XX' Y Y' YY'

      
         (2.39)  

  

 
Fig. 2.4.3. Initial yield for 12F 0  and 6 0    

 
Figure 2.4.4. Yield criterion for compression  112F  ( 1 < 0)  for 6  = 0.  

 

2.5. Estimation of the polynomial constants by uniaxial tests  
 

Based on data fitting of uniaxial tension- and compression tests of [4], the values of dC  

and tC  are determinable and by eq.(2.22) the polynomial constants are known. This can be 

compared with the data and fit of the biaxial measurements of [4].  

In fig. 2.5.1, a determination of dC  and of tC is given. In this figure of [4], the 

compression- strength perpendicular to the grain measurement Y’/X’ = 0.204 is reduced to 

obtain a value of Y’/X’ = 0.13 (at 90
0
 ) to be able to use the measured constants of the bi-

axial tests. It is not mentioned how that possibly can be done but the drawn lines in the 

figure give the prediction of the uniaxial values based on the measured constants according 

to the general eq.(2.21) (given in [4], as in [1], in the strength tensor form of eq.(2.15)). 

For comparison the fits of the Hankinson equations are given following these drawn lines.  

For tension the extended Hankinson equation (2.20) becomes (by scratching the non zero 

compression factor of the extended Hankinson product: eq.(2.20)):  
2 2

2 2 2t t
t t

cos sin
sin cos C 1

X Y

   
       (2.40)  

and this equation fits the line for tension in fig. 2.5.1 when tC  11.9/ 2X . The Hankinson 

equation (2.19) fits in this case for n   1.8 and all 3 equations (2.21), (2.40) and (2.19) 

give the same result although for the Hankinson equations only the main tension- and 

compression strength have to be known and the influence of all other quantities are given 

by one parameter: n or by tC .   
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For compression, the same line as found in [4] was found in [1], (see fig. 11 of [1]), by the  

 

 
 

 

 

 

Compression: 

Eq.(2.19), (2.20), (2.41) 

 

Tension: 

Eq.(2.19), (2.20), (2.40) 

 

 

 

 

 

 

 

 

 

Figure 2.5.1  -  Uniaxial tension- and compression strengths  

 

second degree polynomial with the minimal possible value of 12F  (according to eq.(2.12)), 

showing that except a negative 122F  (as used in [4]) also a high negative value of 12F  may 

cause the strong peak at small angles. Because such a peak never is measured, the drawn 

line of [4] is only followed here for the higher angles by the Hankinson equation. For the 

small angles, the line (dashed) is drawn through the measured point at 15
0
, giving the 

expectable Hankinson value of :n = 2.4 in eq.(2.19) and for eq.(2.31): 2
dC 4/ X' . 

Because of this low measured value, the predicted peak at 10
0
 in fig. 2.5.1 is not probable, 

although the peak-factor of 1.1 is theoretically possible, for a high shear strength, to occur 

at 18
0
 in stead of 10

0
 with 2

dC 7.6 / X'  in the extended Hankinson equation: 

2 2
2 2 2t t
t d

cos sin
sin cos C 1

X' Y '

   
          (2.41) 

This shows that the fit of the polynomial constants, based on the best fit of the 

measurements of [4], is not well for the oblique grain test. The explanation of this 

deviation is the different state of hardening of the data that can be more or less strong, 

depending on the equilibrium stability of the type of test what is less in the uniaxial 

Hankinson test. This, for instance, follows from the ratio of the compression strengths 

perpendicular to the grain and along the grain of 0.2 in the uniaxial tests and 0.1 in the 

biaxial tests showing more hardening in the biaxial tests. Further, because the local peak is 

not occurring in the oblique grain test, the stability is less than in the biaxial test. 

An analogous behaviour occurs in the oblique grain test of clear wood [1] where the tensile 

test shows tC 0  in eq.(2.20) and the compression test shows dC  to be not zero. The 

tensile test shows unstable failure at yield what needs not to be so for the compression test 

that may show additional hardening. For the different hardening states in the different 

possible types of tests, the lowest always possible value should be used for practice thus 
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t dC C 0  . It thus has to be concluded that the strong hardening in the biaxial test in the 

radial plane will not occur in other circumstances and the hardening parameters should be 

omitted for a safe lower bound criterion (in accordance with the oblique grain test).   

As generally found in [1] for spruce clear wood, a fit is possible for off-axis tension by a 

second degree polynomial with 12F  = 0. This also applies for wood with defects, as follows 

from a fit of the data of [4] by the second degree polynomial (ellipse) in the principal 

stresses 1  and 2  ( 6  = 0), for longitudinal tension ( 1  > 0; 12F 0 ), see fig. 2.4.3. This 

fit means that 112F  and 122F  are also zero (for 1  > 0) in the radial plane and because the 

Hankinson value for tension n is different from n = 2, there must be higher degree terms 

for shear ( 166F , 266F ). For fitting these parameters, several starting points are possible.  

A first hypothesis of A(1993) was rejected. :It was concluded that tC  and dC  are coupling 

terms between longitudinal tension and compression and that the different types of failure 

in longitudinal tension and in compression should be given in separate failure criteria for 

these cases. Because of the small values of 122F  and 12F , the best fit for longitudinal 

tension 1  > 0 is, as hypothesis 2, chosen as fit for the total criterion for practice..  

In table 1, column hyp. 2, this fit is given for 12 112 122F F F 0   . Because the fit does not 

change much when data above the uniaxial compression strength: X’ = 41.7 are neglected, 

the fit applies for longitudinal compression too, given in column hyp.2, providing the same 

hardening state as in the oblique grain test (where the strong compression hardening does 

not occur). Based on the strength values of [4], the constants for this case, eq.(2.44), are: 
2 2

tC 11.9 / X 11.9 /59.5 0.00336;     2 2
dC 4/ X' 4 / 41.7 0.00230    and by eq.(2.22)  

266 t d3F C / Y' C / Y 0.00332/5.95 0.0023/3.5 0.00122       or   c of eq.(2.27) is: 

2
266c 0.00122 9.7 5.95 0.68       and: 

166 t d3F C / X' C / X 0.00336/ 41.7 0.0023/59.5 0.000119     , or: 

2
166c 0.000119 9.7 41.7 0.47    .  

1

1 1
F 1/ 59.5 1/ 41.7 0.0072;

X X'
             11

1
F 1/ 59.5 41.7 0.00040,

XX'
     

2

1 1
F 1/ 3.5 1/ 5.95 0.092;

Y Y'
                  22

1
F 1/ 3.5 5.95 0.048

YY'
       and: 

2
66 2

1
F 1/ 9.7 0.0106;

S
         12 112 122F F F 0.    

Eq,(2.44) thus also applies for longitudinal compression as follows from fig. 2.4.3 and 

Table 1, hyp. 2, showing a better overall fit than according to [4] and to hyp. 4.  

To correct the best fit of [4], to obtain a closed curve, the shear strength had to be reduced 

and a reduced factor 0.8 in stead of 0.9 for 112F , was necessary giving:     

 1223F 0.8/ 5.6 43.1 0.000077;    and 

166 t d 1223F C / X' C / X 3F 0.000128 0.000077 0.000051      , 

Thus giving the c-values: 2
166c 0.000051 9.4 43.1 0.2      and: 266c 0.9  (starting point). 

This corrected fit is given in table 1, column 4 (compression fit), and it is seen that the 

corrected fit is not better than column [4] and needs further improvement. For 6  = 0, the 

fit for 112F  is given in fig. 2.4.4. For longitudinal compression eq.(2.21) then becomes:  

2 2 2 2 2
1 1 2 2 11 1 12 1 2 22 2 66 6 112 1 2 122 2 1F F F 2F F F 3F 3F                    
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+ 2 2
166 6 1 266 6 23F 3F 1         (2.42) 

 

Table 1. Shear strength 6  for combined normal stresses  

1  2  6  

test 

factor: 6,theory 6,test/   

[4] hyp. 1 hyp. 2 

tens. 

3 

compr. 

hyp. 4 

compr. 

30 1.5 5.8 1.07  1.03  1.02 

30 0 8.5 0.88  0.91  0.92 

30 -2.5 7.9 0.99  1.10  1.29 

7.3 0 9.2 1.04  1.03  1.01 

0 2.9 3.7 1.38   1.13  1.19 

0 1.5 8.5 0.96  0.89  0.86 

0 0 9.0 1.11  1.08  1.04 

0 -2.5 10.9 0.96  1.05  1.07 

0 -5.4 6.8 0.53  1.12  1.12 

-7.7 0 9.6 1.05  1.01  0.96 

-20 1.5 7.7 0.84  0.83  0.68 

-20 0 9.6 0.99  0.96  0.88 

-30 -2.5 11.3 1.04  0.90  0.94  

mean factor                                          0.99                              1.0                                1.0  

 

Inserting F-values in eq.(2.42), this equation becomes: 
2
6 2 1 1 1 2 2

2
1 0.9 0.2 1 1 1 1

Y' X ' X X' Y Y'S

               
                      
         

 

                                           
2 2

2 1 1 2 1 2

2 2
1 0.8 0.77 0.41

X 'Y 'Y 'X ' X 'Y '

      
       
 

   (2.43)  

This equation thus only applies for the torsion tube test for failure in the radial plane, when 

it is assumed that negative values of 12F  and 122F  (by confined dilatation) are possible. 

This however is questionable because its fit [4], in Table 1 is not well enough.    

For longitudinal tension ( 1 ≥ 0), eq.(2.21) becomes: 

2
6 2 1 1 1 2 2

2
1 0.68 0.47 1 1 1 1 1

Y' X ' X X' Y Y'S

               
                      
         

   (2.44)  

As mentioned, this equation also applies for compression failure in the tangential plane. 

Because the compression hardening 112F , 122F , according to eq.(2.43) occurs for low 

values of 6  only, and only in the torsion tube test in the radial plane, eq.(2.44) more 

generally represents the failure criterion for both tension and compression and shear. 

However, for tests and structures, showing early instability at initial flow, the higher 

degree hardenings terms will be zero, causing the Hankinson value of n = 2 for timber and 

glulam. Because this is to be expected in most situations in practice, the determining 

criterion becomes:  
2
6 1 1 2 2
2

1 1 1 1 1 0
X X' Y Y'S

          
                
      

,  
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or worked out, identical to eq.(2.5) with 12F 0:  

2 2 2
6 1 1 1 2 2 2

2
1

X X' XX' Y Y' YY'S

      
          (2.45)  

It therefore is necessary to use eq.(2.45) in the Codes in all cases for timber and clear wood 

to replace the now commonly used, not valid Norris-equations. This criterion is a critical 

strain energy condition of the reinforcements leading to eq.(3.9) for equal tension and  

compression strengths and to eq.(3.11) with 12F  = 0, for wood.  

 
Figure 2.5.2 – Combined longitudinal shear with normal stress in grain direction. 166F  

 

 
Figure 2.5.3 - Longitudinal shear strength ( 1  = 0) depending on the normal stress. 266F  

   

 

3. Discussion of applied failure criteria  
 
3.1 Yield criterion.  
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A yield- or flow-criterion gives the combinations of stresses whereby flow occurs in an 

elastic-plastic material. For more brittle failure types in polymers with glassy components 

like wood at tensile loading, there is some boundary where below the behaviour is assumed 

to be elastic and where above the gradual flow of components at peak stresses and micro-

cracking may have a similar effect as plastic flow with hardening (like metals with gradual 

plasticity and no yield point). 

The loading, damage and hardening behaviour up to failure can fully be described by 

deformation kinetics [6]. There are several processes acting causing early local flow and 

stable micro-crack propagation, while the main part of the material is elastic and different 

inelastic strain rate equations are necessary depending on the loading type and material 

zone.  

The failure criterion depends on the ultimate damage process and failure occurs when the 

standard test becomes unstable (due to loss of equilibrium).  

 

3.2. Critical distortional energy of the isotropic matrix  
 

It is not necessary to describe the whole initial loading curve with gradual flow and 

hardening to describe the ultimate state of flow. The unloading from this ultimate state is 

linear elastic and on again reloading, the loading line is linear elastic up to flow. Thus the 

geometry is unaltered and the loading history has no effect on the ultimate state and the 

linear elastic – full plastic approach of limit analysis is applicable and the initial yield 

criterion gives the boundary where below the behaviour is elastic.  

Because an isotropic matrix of a material may sustain very large hydrostatic pressures 

without yielding, yield can be expected to depend on a critical value of the distortional 

energy. This energy is found by subtracting the energy of the volume change from the 

strain energy. Thus for the isotropic matrix material this is (expressed in matrix stresses):  

     2 2 2 2 2 2
x y z x y y z z x xy yz xz

1

2E E

 
                   

 
 

        
2

x y z

1 2

6E

  
      
 

 

               
2 2 2 2 2 2

x y y z z x xy xz yz

1 1

6E 2G


                    (3.1)  

For plane stress, the distortional energy thus is with 2G = E/(1 + ν): 

  2 2 2
x x y y

1
3

3E


          (3.2)  

When x , y  and   are the nominal stresses of a material, having a reinforcement in x 

and y direction that takes a part of the loading, then the distortional energy of the matrix 

becomes:    

      2 2 2
x x x y y y tx ty

1
1 c 1 c 3 1 c c

3E


            ,  (3.3)  

where the reinforcement parts are subtracted from the total load. For the reinforcement, 

taking only normal force and shear , this is: 

 2 2
ax a

a

1 '
3

3E


        with:     a

ax x x

E
1

E

 
     

 
 

where x  is the area of the reinforcement per unit area, giving:  
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2

2 a
x x

a

E1 ' E
c 1

1 E E

  
     

   
   (3.4) 

The other values of ic  are analogous.  

When the distortional energy is constant at yield then eq.(3.3) gives:   

     2 2 2
x x x y y y tx ty1 c 1 c 3 1 c c C               (3.5)  

For y 0    , this gives the yield stress in x-direction x X'  . In the same way 

y Y'  , when x 0     and is   =  S when x y 0    , giving the equation:  

22 2
yx

12 x y2 2 2
2F 1

X' Y ' S

 
           (3.6) 

The Norris equation follows from eq.(3.6) when 122F 1/ X'Y' .  This however is a special 

value of 122F  that need not to apply in general.  

For the special case that: tx tyc c 0  , when, as for concrete, it is assumed that the 

reinforcement takes no shear, eq.(3.5) becomes: 
22 2

x y yx

2 2 2 2
1

X' 3S Y' S

   
       (3.7) 

and because 23S X'Y' , as applies for isotropy and isotropy is assumed by Norris for the 

cell walls in his derivation (what also is measured), so that this equation becomes:  
22 2

x y yx

2 2 2
1

X'Y 'X ' Y ' S

   
       (3.8) 

giving the Norris equation as critical distortional energy equation of the matrix when the 

reinforcement “flows” and thus only may carry  a normal force.  
Wood shows early failure of the matrix. Then the reinforcement carries the total load by 

the normal- and shear forces and the coupling term disappears and the equation gives the 

apparent critical distortional energy of the reinforcement:  
22 2
yx

2 2 2
1

X ' Y ' S

 
      (3.9) 

being the older empirical Norris equation.  

The Norris equations (3.8) and (3.9) give the possible extremes of 12F  between zero and 

the maximal value. Although the Norris-equations are used for wood, they only apply for 

materials with equal compression and tension strengths.  
When these yield strengths are not equal, as for wood, different apparent critical 

distortional energies should be applied for tension and compression as first approximation.  

 

3.3  Hankinson equations  
 

The Hankinson equations apply for the off-axis uniaxial strengths and has to satisfy the 

Critical distortional energy equation for initial yield: 
2 2 2

1 1 2 2 11 1 12 1 2 22 2 66 6F F F 2F F F 1               (3.10) 

where for uniaxial tensile stress is:  
2

1 t cos          2
2 t sin           6 t cos sin       

Substitution of these stresses gives eq.(2.14) which can be resolved into factors giving 

eq.(2.17), what is the product of the Hankinson equation for tension and for compression.    

As discussed before, this is possible because::   
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2
122F 1/S 1/ X'Y 1/ XY'     (3.11)  

In the generalized Hankinson equation, eq.(2.19):  
n n

t tcos sin
1

X Y

   
     (3.12) 

is the exponent n = 2  for the initial yield equation. Measured is also n = 2 for the strengths 

in bending and in tension of clear wood, also for veneer and for shear in the radial plane 

measured with the "Schereisen"-device. The measurements thus indicate that also in the 

radial plane n = 2  applies for initial yield. For n   2, as may apply for compression, the 

extended Hankinson equations, eq.(2.20), apply.  

 

3.4. Rankine criterion  
 

The Hankinson equation (2.19) for n = 2,  
2 2

t tcos sin
1

X Y

   
    (3.13)  

contains the  maximum stress condition (or Rankine  criterion) of failure for very low and 

for high angles (see fig. 3.2).  

For   in the neighborhood of   = 90
0
, eq.(3.13) is about:  

2
t sin

1
Y

 
     (3.14) 

the maximal stress criterion for tension perpendicular to the grain. This also applies down 

to e.g. 45
0
, because 1/X is of lower order with respect to 1/Y and thus the difference of 

eq.(3.14) with eq.(3.13) is of lower order then. In the same way, for very small values of 

 , the ultimate tensile strength criterion in grain direction, eq.(3.15) applies:  

 
Figure 3.2. -  Hankinson and Maximal stress criteria 

 
2

t cos
1

X

 
   (3.15)  

For values of  , where the first two terms of eq.(3.13) are equal or:  cos /√X = sin /√Y,  



Section A, Failure criterion of wood and wood like polymers 

 

 22 

the deviations of eq.(3.14) and (3.15) from eq.(3.13) are maximal (50%). In the 

neighborhood of this value of   is:  

(cos /√X - sin /√Y)
2
 ≈ 0 or:     2 2cos / X sin / Y 2sin cos / XY 0         

or with eq.(3.13):  

t tsin cos sin cos
1

SXY / 2

     
     (3.16)  

giving the ultimate failure criterion for shear by the fictive shear-strength: S XY / 2 . 

It is easy to show that this value of S is the point of contact of the lines eq.(3.16) and 

eq.(3.13). Although eq.(3.16) fits precisely at this point where  tg Y / X  , the 

difference of equations (3.14) to (3.16) with eq.(3.13) is too high at their intersects for 

application (see fig. 3.2). This also follows from figure 3.3 for wood and for other 

comparable polymers.   

 
Figure 3.3. -  Maximal stress failure conditions. 

 

 

3.5.  Norris equations  
 

The Norris equations follow from the yield equation, eq.(3.10), when compression and 

tension strengths are equal: X = X‘  and Y = Y‘ and thus different equations should be 

used in each stress quadrant with the strengths X,Y;  X‘, Y;  X, Y‘;  X‘, Y‘. 

When this is done, fig. 3.4 shows that the Norris equations still do not apply.  

The success of these equations follows from the uniaxial applications (in the first and third 

quadrant) when the Hankinson equations apply.  
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After substitution of X = X‘  and Y = Y‘, the yield equation, eq.(2.14), can be resolved in 

factors, like eq.(2.17) as:  
2 2 2 2

t t t tcos sin cos sin
1 1 0

X' Y ' X ' Y '

          
        

   
   

showing the Hankinson equations to apply and leading to:  
2 4 2 4 2 2 2
t t t

2 2

cos sin 2 sin cos
1

X'Y'X' Y'

      
      (3.17) 

This is equal to the Norris-criterion:  
2 4 2 4 2 2 2 2 2 2
t t t t

2 2 2

cos sin sin cos sin cos
1

X'Y 'X ' Y ' S

         
      (3.18)  

when: 21/ S 3 / X'Y' .   

This value of S is measured and can be found in literature (see [1]), showing that the 

Norris equations are the same as the Hankinson equations for the uniaxial stress case.  

For tension (replacing X‘  by X and Y‘ by Y in eq.(3.18)), it follows in the same way that 
2S XY /3 , what may be different from the value for compression, showing that fictive 

values of S is needed in the other quadrants. Further, the yield criterion eq.(3.10) is an 

ellipsoid, having a small, (or zero) slope with respect to the 1 - axis and thus a negligible 

12F . The centre of the ellipse in the 1 – 2 – plane is the point: ((X – X‘ )/2; (Y – Y‘ )/2). 

When the  part of this ellipse in e.g. the compression – compression quadrant has to be 

approximated by an ellipse with the centre at the point (0,0), (as applies for the Norris 

equation), then 12F  of that ellipse has a pronounced value. In the tension – compression 

quadrant the apparent 12F  even has the opposite sign. An improvement of eq.(3.18) thus 

will be to have a free slope of the ellipses and to use eq.(3.6) in stead as an extended Norris 

equation.  

From eq.(3.17) it follows that: 
2 4 2 4 2 2 2
t t t

2 2 2

cos sin sin cos
1

X' Y ' S'

      
      (3.19) 

when 21/S 2X'Y'  in eq.(3.17), giving the older empirical Norris equation, that has a 

zero 12F  and fits better than the later proposed equation (3.18), but still does not fit in all 

quadrants (see fig. 3.4) because of the assumed equal compression and tension strengths. 

Further in all four stress quadrants an other, fictive shear strength has to be used.  
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Figure 3.4. -  Norris equations for 6  = 0.  

 

It can be concluded that the Norris equations only can be applied for uniaxial stress being 

equivalent to the Hankinson equations for initial yield.  

Because the Norris equations in the general form are not right, they should not be used any 

more.   

As discussed before the hardening is mostly not present in tests and structures and a lower 

bound should be used where also 12F  can be neglected. Thus for plane stress is:  

2 2 2
1 1 2 2 11 1 22 2 66 6F F F F F 1            (3.20) 

in all cases, what is more easy to use than the not valid Norris criteria.  

In general eq.(3.21) applies for the 3-axial stress state, as also is discussed in [1]:  

   
2 2 22
2 3 41

1 2 3 12 1 2 1 3

21 1 1 1
2F

X X' Y Y' XX' YY'

      
                 
   

 

        + 
2 2
5 6

2
1

S

 
    (3.21) 

In this equation 4  is the rolling shear and, 2  and 3  are the normal stresses in the 

tangential and radial planes. In this equation too, 12F  = 0 should be assumed.  

It thus can be concluded that the critical distortional energy criterion, reduced when 12F  = 

0, to the critical strain energy criterion, also has to be used as a lower bound of the ultimate 

failure condition.  

 

4. Conclusions  
 

- The tensor polynomial failure criterion is shown to be regarded as a polynomial 

expansion of the real failure criterion.  

- It is also shown (Appendix 1), that the second degree tensor-polynomial yield criterion 

represents the critical distortional energy principle for initial yield.   

- Initial flow in transverse direction, follows the second degree polynomial eq.(2.15). For 

compression, (perpendicular), strong hardening is possible leading to the isotropic strength 

behavior (independent of orientation), at the strain where all empty spaces are pressed 

away.  

- For longitudinal initial yield in the radial plane, the second degree polynomial eq.(2.42), 

(with 12F  = 122F  = 0), applies in a stable test, while in the tangential plane 122F  = 112F  = 

12F  = 0. When early failure instability occurs in the test, at initial crack extension, as for 

instance in the oblique-grain tension test, or for shear with compression in the 

“Schereisen” test, there are no third and higher degree terms, also not in the radial plane. 

Higher degree terms thus are due to hardening, depending on the type of test, due to stable 

crack propagation and crack arrest after initial yield.   

- The third degree polynomial hardening terms of the failure criterion are shown to 

represent the, in C(2011) theoretical derived, Wu-mixed-mode I-II fracture equation, 

showing hardening to be based on hindered micro-crack extension and micro-crack arrest. 

This also applies for kinkband and slip line formation of compression failure, eq.(2.35), 

which is a variant of shear failure according to the mixed mode Wu-equation. Important is 

the conclusion that the failure criterion shows that micro-crack extension is always 

involved in fracture processes. The derivation of the new fracture mechanics theory, is 

therefore based on micro-crack extension. In C(2014), the exact derivation is given of the 
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geometric correction factor for small crack extension towards the macro-crack tip. This 

correction factor appears to be numerical the same as for macro-crack extension. 

- Because in limit analysis, the extremum variational principle applies for initial “flow” 

and thus the virtual work equations apply, the variations are sufficient small to get a linear 

irreversible process, and then the plastic potential function exists, which is identical to the 

yield function at flow, and for which the normality rule applies. This thus applies for the 

derived orthotropic critical distortional energy criterion, making complete exact solutions 

possible.  

- Wood behaves like a reinforced polymer. The absence of coupling term, 12F =0, between 

the normal stresses in the main planes, means that the  reinforcement takes only normal 

loading, causing the matrix to carry the whole shear loading. Therefore also 122F 0 . The 

reinforcement then is the most effective, as when flow of the reinforcement occurs.   

- Failure of the matrix occurs before flow of the reinforcement. This follows e.g. from 

Balsa wood, which is highly orthotropic, but shows the isotropic ratio of the critical stress 

intensities  of the isotropic matrix material at failure at initial flow. For dense, strong, (thus 

with a high reinforcement content) clear wood, this is shown by the oblique crack 

extension, according to Fig. 1 of C(2011), showing the isotropic oblique angle at the start 

of shear crack extension, and thus shows the matrix to be determining for initial failure. It 

is therefore a requirement for an exact orthotropic solution, applicable to wood, to satisfy 

the equilibrium condition for the total orthotropic stresses, as well as for the isotropic 

stresses in the matrix, at failure. This last condition is not satisfied in all other existing 

fracture mechanics models.  

- Early failure of the matrix causes stress redistribution of mainly shear with compression 

in the matrix and increased tensile stress in the fibres. The measured negative contraction 

for creep in tension indicates this mechanism. As in reinforced concrete, truss action is 

possible, as noticeable by the strong negative contraction coefficient (swelling instead of 

contraction) in the bending tensile zone of the beam. Failure in compression is determined 

by the difference in the principal compression stresses. Thus the maximal shear stress or 

Tresca criterion applies. The necessary validity of the Tresca criterion is confirmed by 

D(2008b) and D(2008a), where the strongly increased (sixfold) compression strength 

under the load of locally loaded blocks and the increased embedding strength of dowels is 

explained by the construction of the equivalent slip line field in the specimen based on the 

Tresca criterion. In addition, the many apparent contradictions of the different 

investigations are explained by this theory. This strong increase of the compression 

strength is due to confined dilatation by real hardening (when the empty spaces in wood 

are pressed away).  

- The initial yield equation for uniaxial loading can be resolved into factors containing the 

Hankinson equation for tension and compression for n = 2. Thus when the Hankinson 

parameter n in eq.(2.19) is n = 2, in tension and in compression, all higher degree terms are 

zero. This applies for clear wood, depending on the type of test. It also is probable that this 

is a general property for timber [11], due to preferred failure of the tangential plane.   

- The yield equation for uniaxial loading, containing higher degree terms, can be resolved 

in factors of the extended Hankinson equations, eq.(2.46) for tension and compression 

when n in eq.(2.19) is different from n = 2.   

- For wood, at least in the radial plane, after hardening in a stable test, the combined 

compression - shear strength depends on the third degree coupling term 266F , or 166F ,giving 

the parabolic Mohr- or Wu- equation of fracture. This is theoretically explained in [9] by 

micro-crack propagation in grain direction. This increase of the shear strength is an 

equivalent hardening effect due to crack arrest in the worst direction by strong layers.  
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It is shown that the increase of the shear strength, by compression perpendicular to the 

shear plane, is not due to Coulomb friction, being too small for wood.  

- Because of the grain deviations from the regarded main directions, there always is 

combined shear-normal stress loading in the real material planes where eq.(2.27) applies.  

112F  is due to misalignment of the vertical cells by rays in the radial planes.  

- Therefore, for wood in longitudinal compression in the radial plane this micro-crack 

failure mechanism is determining, giving high values of 266F  and 112F , close to their 

bounds of  c ≈ 0.8 to 0.9.  

- The same as found for 266F  as function of 2 , is to be expected for 166F  as function of 

1 . This is given in fig. 2.5.2.  

- For wood in longitudinal tension, 12F , 112F  and 122F  are zero and only 166F  and 266F  

remain in the radial plane as higher degree terms, in stable tests, showing an other type of 

failure than for longitudinal compression.  

For longitudinal compression, at 6  = 0, equivalent slip line hardening, (high 112F ) as well 

hardening by confined dilatation (showing a negative  122F  and 12F ) may occur. This last 

type of hardening occurs only in the torsion tube test, because the negative 122F  and 12F  of 

[4] predict the compression peak of fig. 2.5.1 in the oblique grain test, that does not occur 

by the lack of hardening in the oblique grain test. This also will be so for structural 

elements and the lower bound criterion with only 166F  and 266F  (and zero 12F , 112F  and 

122F ) is probably more reliable (hyp 2 fits better than hyp 4 in Table 1) for longitudinal 

compression failure in the radial plane. In the tangential plane also 166F  and 266F  are zero, 

making the second degree criterion determining. 

- In general thus eq.(3.21) applies for the 3-axial stress state, as is discussed in [1]: 

 
2 2 2 2 22
2 3 4 5 61

1 2 3 2

21 1 1 1
1

X X' Y Y' XX' YY' S

        
             
   

 

where 4  is the rolling shear and 2  and 3  are the normal stresses in the tangential and 

radial planes and where it is assumed that 12F  = 0 as applies for longitudinal tension.  

-  Equations (2.28) and (2.44) can be used for analyzing test data. Because it is 

questionable that the hardening by confined dilatation or crack arrest may occur in all 

circumstances, because it depends on the type of test, the hardening contained by the third 

degree terms should be omitted for a general application.  

- Therefore the second degree polynomial, eq.(3.20) or eq.(2.45), for plane stress:  
2 2 2
6 1 1 1 2 2 2

2
1

X X' XX' Y Y' YY'S

      
           

should be used for initial yield and for ultimate failure for the Codes and as initial yield 

equation, it applies for the 5th percentile of the strength as well. 

- Only this derived extension of the von Mises criterion contains the, for orthotropic 

materials, necessary independent value of the interaction constant as 12F  and accounts for 

different tension- and compression strengths and is able to give the strength in any 

direction in the strength tensor form.  
- The ultimate stress principle for failure, eq.(3.14), (3.15) and (3.16), does not apply for 

the general loading case and only applies locally and  approximately for only uniaxial 

loading. These equations also are predicted by the fracture mechanics singularity method 

[9], showing thus that this method, that always is applied in fracture mechanics for all 

materials, is not right and should not be used.  
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- The Norris equations are not generally valid and are only for uniaxial loading identical to 

the Hankinson equation with n = 2, when the right (mostly) fictive shear-strength is used. 

This equation thus should not be used any more.  

- There thus is no reason to not apply this exact general criterion, also for the future Codes, 

for all cases of combined stresses. Only this criterion gives the possibility of a definition of 

the off-axis strength of anisotropic materials.  

- It was for the first time shown in A(1982) that the tensor polynomial failure criterion 

applies to wood. Also is shown, that the fourth-degree and higher-degree polynomial terms 

have no physical meaning and thus are zero. Only the third-degree polynomial part is 

identical to the real initial flow criterion, while the third degree terms represent deviations 

from orthotropic behavior and represent post initial flow hardening behavior, which 

numerical value depends on the stability of the test specimen and testing device.  

- For uniaxial loading, the failure criterion can be resolved in factors, leading to the 

derivation of extended Hankinson equations. This provides a simple method to determine 

all strength parameters by simple uniaxial, oblique grain compression and tension tests. 

Based on this, the numerical failure criterion is given with the simple lower bound criterion 

for practice and for the codes,  

- The existence of an isotropic matrix in wood (lignin with branched hemicellulose) 

follows not only from material analysis, but also, as mentioned, from the high compression 

strength at confined dilation with the absence of failure by triaxial hydrostatic 

compression, (what is not the case for orthotropy, because then, for equal triaxial stresses, 

the strains then are not equal and yield remains possible). 

- Plastic flow in wood starts with propagation of empty spaces by segmental jumps, just as 

the dislocation propagation in steel and the possibility should be accounted that there is no 

change in density at initial flow (as for steel) and the plastic incompressibility condition 

should be accounted as possibility, and as follows from the normality rule of flow in 

combination with perfect plasticity, the Tresca criterion (maximal shear stress criterion) 

then also should apply. By the dissipation according to the incompressibility condition, the 

minimum energy principle is followed providing the lowest possible upper bound and 

therefore the closest to the exact flow criterion. Limit analysis of the matrix therefore has 

to be based on incompressibility and the Tresca criterion.  

- It has to be stressed, for the virtual work equations of limit analysis, that neither the 

chosen equilibrium, nor the compatible strain and displacement set need not be the actual 

state, nor need the equilibrium and compatible sets to be related in any way to each other. 

- The loading curve up to yield and failure also should be described by deformation 

kinetics [6] to adapt for temperature, time and loading rate influences.  
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Appendix 1 
 
Derivation of the orthotropic critical distortional energy principle 
 

It was for the first time shown for wood, in A(1982), that the second degree 

tensorpolynomial describes initial “flow”, what is shown in the following, to represent the 

orthotropic extension of the critical distortional energy criterion providing an exact flow 

criterion as necessary basis for exact solutions according to limit analysis.  

Because the matrix of wood material is isotropic and therefore may sustain large 

hydrostatic pressures without yielding, yield depends on a critical value of the distortional 

energy. This energy dW  is found by subtracting the energy of the volume change from the 

total strain energy. Thus for the isotropic matrix material this is:  

dW  =      2 2 2 2 2 21 1

2
x y z x y y z z x xy yz xz

E E E

 
           

 
            

 
 

      
21 2
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x y z
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2 2 2 2 2 21 1

6 2
x y y z z x xy xz yz

E G


        


              (a.1)  

where i  are the normal matrix stresses; i  the shear stresses; E the modulus of elasticity, 
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G the shear modulus and   Poison’s ratio of the matrix material following 2G = E/(1 + ν).  

Wood has to be regarded as a reinforced material and initial failure is due to failure of the 

isotropic matrix. This is shown in C(2007b), leading to a new fracture mechanics theory 

and a new transformation of the Airy stress function, making exact solutions possible as 

applied for the derivations of the Wu
 
mixed mode I-II fracture criterion and the derivations 

of the right fracture energies and the relation between mode I and II stress intensities and 

energy release rates. According to C(2007b),  the matrix stresses can be expressed in 

orthotropic stresses as follows:  

The stress in wood 
,x or  is 1n  times the stress in the matrix 

x  due to the reinforcement in 

x-direction: , 1( / )x or x x xE E n      , while the reinforcement in y-direction is regarded 

to belong to the matrix, thus 
,y or y   and 

yE E  of the matrix. For the shear stress, the 

multiplying factor is 
6 (2 ) /xy yx xyn G E     . Thus 

xE , 
yE , 

xyG , 
xy  and 

yx  are the 

orthotropic values of wood due to the reinforcements.  

Eq.(a1) applies for a material with equal tension and compression strength. For unequal 

axial strengths, the failure condition e.g. in x-direction is: ( ) ( ') 0x xX X     , where X 

is the tensile strength and 'X , the compression strength, as given in Fig.1a.  

This condition can be written like:  
2 2

' '

2 2
x

X X X X


    
    

   
     or:        x xp X      (a.2) 

and the behavior is identical to that of a material with equal tension and compression 

strengths of X  being pre-stressed by stress xp .  

This result follows from the applied linear transformation. Because Eq.(a.1) is a physical 

property, it should be independent of the chosen vector space and according to the 

additivity rule of linear mapping (linear transformation) is:  

f(x + y) = f(x) +f(y), or in this case: f ( ) p f ( )  + f ( ) p  giving: 

f ( )  = f ( ) p  f ( ) p    (a.3) 

  
Figure 1a. – von Mises criterion for wood.  

 

Substitution of x xp  , y yp   and z zp   for respectively x , y  and z  in Eq.(1) 

gives:  
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26 / 2ij in C     ( 6 / (1 )dEW   )    and after subtraction of:  f ( ) p  this is:   
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, , 2

,

1 1

2 2 3 /
x or x or

y z z or z y y ij i p

p p
p p p p n C

n n
  

   
            
   

 + f(- p) + C =  

3 / (1 )dC EW     (a.4)  

with: f(- p) 2 2 2 2

, 1 , 1 , 1/ / /x or z x or z z x or pp n p p pp n pp p p n C       . 

following from inserting 
x xp  , 

y yp p    and 
z zp   in Eq.(a.1).  

Of interest for failure by flat crack propagation is the plane stress equation with 

0z zp   ; 0xz yz    and with 
,y y orp p p  , giving for Eq.(a.4): 

22 2
, , ,, , , ,

2 2

1 1 1 1 1 6

2 2 3 1
' ' ' ' ' '

x or y or y or yx or x or x or x or or
p p

p p
C n C n C C n n C n C n

         
          

      
  (a.5)  

For 
, 0y or or   , Eq.(a.5) becomes:  

2

, , ,

2

1 1 1

2 1
' '

x or x or x orp
p

C n C n n

   
   

   
   

This is identical to , ,( )( ') 0x or x orX X    , or to: 2

, ,( ' ) ' 0x or x orX X XX     , 

showing that:   1 ,2 'x orpn p X X   ,      and    2

1' 'C n XX   

The same applies in the perpendicular y-direction for the uniaxial tension and compression 

strengths Y and 'Y  giving: ' 'C YY   and   , 1/ 2 'x orp n p Y Y    

This last result is to be expected because according to the molecular theory, the strength is 

proportional to the E-modulus and thus is 2

1' '/YY XX n  and 1' ( ')X X n Y Y   . Then 

also is: , 1 1/ ' ( ') /x orp p n Y Y X X n     .  

Eq.(a.5) becomes:  
22 2

, , , ,, ,

2 2

1 1 1 6

3 1
' ' ' ' ' '

x or y or y or y orx or x or orp p
C n C n C C n C C n

     
     

   
      or: (a.6)  

22 2
, , ,, , ,

12 , , 2
2 1

' ' ' '

y or y or y orx or x or x or or
x or y orF

XX X X YY Y Y S

     
            (a.7) 

where S  is the shear strength and: 12 12 1/ ' 1/ ' 'F C n XX YY    (a.8) 

This value of 12F  applies for the elastic state. At initial stress redistribution and micro-

cracking of the matrix and 12F  becomes lower reaching a near zero value at yield or failure 

initiation. This may indicate an early dissipation of the elastic distortional energy for 

formation of initial micro-cracks. This dissipation of distortional energy is according to the 

incompressibility condition and thus follows a minimum energy principle of yield. At the 

end of this stress redistribution, yield occurs according to Eq.(a.7) with 12 0F  . This last 

means an absence of coupling terms between the normal stresses. This only is possible 

when the reinforcement takes the whole normal loading and no shear, causing the matrix to 

fail by shear and the critical distortional energy principle thus reduces to the Tresca 

criterion. The necessary validity of the Tresca criterion is confirmed in
 
[17] and

 
[18], 

where the strongly increased (6-fold) compression strength under the load of locally loaded 

blocks and the increased embedding strength of dowels and nails, is explained by the 

construction of the equivalent slip line field in the specimen, using the Tresca criterion. 

The Tresca criterion satisfies the normality rule and thus inherently the theorems of limit 

analysis for matrix failure. The normality rule thus does not apply for hardening. This 

condition is shown to be replaced by the minimum work condition for dissipation 
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represented by the yield equation and the hardening state constants 
dC  and 

tC  of Eq.(17).  

Thus after initial yield, shear strength hardening is possible according to the mixed mode 

Wu equation and finally when the empty spaces in wood are pressed away, real hardening 

is possible by confined dilatation at locally compression loading of the isotropic matrix.  

This is discussed in Section D. 

 

 

Appendix 2 
 

Transformation of strength tensors: 
Fij 

 

 

 

 

 

 

 

 

 

 

Positive rotation about the main 3-axis (z-axis) Positive signs in right handed    

 coordinate system  

  

Sign convention for shear: 

If an outward normal of a plane points to a positive direction, the plane is positive, and if 

on a positive plane the stress component acts in the positive coordinate direction, this 

component is positive. 

 

In the x’, y’ coordinates of figure above the strength tensors are: 

 
The principal strength components are: 
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Transformation about the 3- axis gives: 

 

1 2 1 2
1

F F F F
F ' cos(2 )

2 2

 
   ;     1 2 1 2

2

F F F F
F ' sin(2 )

2 2

 
      

 6 1 2F ' F F sin(2 )    ;    3 3F ' F ;    4 5F ' F ' 0    

 

 

F’ij 

invariant Cos2   Sin2  Cos4  Sin 4  

F’11 I1 I2 0 I3 0 

F’22 I1 - I2 0 I3 0 

F’12 I4 0 0 - I3 0 

F’66 4I5 0 0 - 4I3 0 

F’16 0 0 - I2 0 - 2I3 

F’26 0 0 - I2 0 + 2I3 

F’13 I6 I7 0 0 0 

F’23 I6 - I7 0 0 0 

F’36 0 0 - I7 0 0 

F’44 I8 I9 0 0 0 

F’55 I8 - I9 0 0 0 

F’45 0 0 I9 0 0 

F’33 F33 0 0 0 0 

      

Read e.g. F’11 = I1 + I2cos2  + I3cos4  

 

 1 11 22 12 66I 3F 3F 2F 3F / 8    ;      2 11 22I F F / 2  ;         3 11 22 12 66I F F 2F F / 8    ;    

 4 11 22 12 66I F F 6F F / 8    ;             5 11 22 12 66I F F 2F F / 8    ;       6 13 23I F F / 2  ;  

 7 13 23I F F / 2  ;      8 44 55I F F / 2  ;      9 44 55I F F / 2  . 


